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ABSTRACT

The adaptivity has been a critical characteristic that is utilized by humans and an-
imals to complete more tasks in better, more cozy, more comfortable approaches
that will lead to lower damage. In the topic of Robotics and Reinforcement Learn-
ing, adaptivity is also of necessity and is worth researching how to attain and
maintain the adaptivity of policies. In this paper, we declare and validate the find-
ings that a previous work, Rapid Motion Adaptation (RMA), is totally robustness
and has little adaptivity. We find that the RMA policies work well even if their
adaptation module output is pure noise. We propose to use auxiliary losses and
a pretrained ’world model’ to relieve this severely bad phenomenon. Further, we
put forward that applying complex network structures helps the learning of adap-
tivity, just letting the teacher-student framework out. We also investigate if better
history utilization would work and give several insights on how to maintain adap-
tivity. More, we deploy our methods on real quadrupedal robot Unitree A1 and it
valids in real world too.

1 INTRODUCTION

In the realm of robotics, the pursuit of adaptivity stands as a cornerstone in the quest for machines
that can seamlessly navigate the complexities of various environments and tasks. Just as animals and
humans leverage their adaptivity to conquer diverse challenges, the need for robots to possess and
maintain this essential trait becomes increasingly apparent. It is within this context that this paper
delves into the crucial realm of maintaining adaptivity for quadruped robots through the lens of
Reinforcement Learning, presenting a pivotal foundation for the advancement of robotic capabilities.

Well, adaptivity and robustness are always a trade-off in the concept of learning. As for Robot
Learning, robustness have been enhanced to maximum through domain randomizations, including
frictions, additional base mass, controller stiffness, how hard to push the robot, etc. Since the way
to robustness is known, the way to adaptivity, however, seems ever more critical.

In the ensuing sections of this emperical study, we review the state-of-the-art work in this content,
RMA, discuss adaptation within a validation study, and invalidate the adaptivity of RMA policy:
we find that adding severe noise to the adaptation module in RMA does not effect the performance,
indicating that RMA is nothing but robustness. We then put forward some better solutions for
gaining and maintaining adaptivity to achieve better performances. And we do sufficient both sim
and real experiments to validate or invalidate the novel thoughts. Literally, our major contributions
in this work are:

• We invalidated RMA’s adaptivity.
• We built auxiliary losses to overcome the mentioned over-robust phenomenon in RMA and

also reached higher performances.
• We combined complex architectures and different history utilizations with reinforcement

learning to attain better adaptivity.
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Figure 1: RMA noise test. Dashed lines for RMA-Teacher and Solid lines for RMA-student. We
tested the linear velocity tracking error under various velocity commands and uniform noise scales
levelled 0 to 2. The noises hardly change the performances which shows the excellent robustness of
RMA base policy but nothing adaptive.

As we stand at the precipice of a new frontier in robotics, the pursuit of adaptivity for quadruped
robots through the prism of Reinforcement Learning stands as an indomitable testament to our col-
lective aspiration for machines that can seamlessly evolve and navigate an ever-changing world. In
this spirit, this paper seeks to ignite a transformative discourse that champions the indelible signifi-
cance of adaptivity, heralding a future where the adaptive prowess of robots rivals the very essence
of nature itself.

2 RELATED WORKS

2.1 RAPID MOTION ADAPTATION

Rapid Motion Adaptation ? proposed a method of attaining adaptivity through teacher-student
pipeline. The teacher policy is composed of a current privileged observation encoder and a base
policy, and they are trained together. The student policy uses the same fixed base policy as the
teacher’s, and learns a non-privileged observation history encoder which should be align with the
teacher encoder’s output. It is learned by a MSE Loss between teacher and student’s outputs.

3 METHODOLOGIES

3.1 EFFECT OF TRAINING PIPELINE: REINVESTIGATE RMA ADAPTIVITY

In this section we reinvestigate RMA’s adaptivity. An adaptive policy, say, in RMA structure, def-
initely relies on its adaptation module. It’s quite suprising to find out that RMA’s both teacher and
student policy still functions well even if we add severe noises to the adaptation module, as our
experiment result Fig.1 shows. Note that we regularized the latent vector to [−1, 1] through a Tanh
layer at the bottom of the net. The noise added is uniform noise, leveraging

z ←− clip(−1, 1, z + U(−σ, σ)) ,

where σ denotes the noise level. From the formula, it can be inferred that when σ = 2 it is totally
pure noise. However, RMA-teacher and student has little evidence that they’re effected by the
noises on adaptation module; contrarily, the result shows that the base policy of RMA is robust
enough. Let’s describe such policies as ”over-robust”. Also, it shows the low transfer ability of
RMA-student as the performance becomes totally bad in unseen conditions. If it’s really an adaptive
policy, the domain transferring won’t be that kind of struggling because the policy and its systematic
identification would change over different environments.
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Figure 2: Auxiliary loss aided version of RMA. A fixed pretrained dynamics model replaces the
environmental factor encoder.

Figure 3: Dual-history structure with complex long history encoder adopted. A dashed line means
that it could be ignored.

3.2 AUXILIARY LOSSES

To avoid the ”over-robust” phenomenon, we are suspicious that the deviation happened in the first
training phase in RMA when we used RL loss to train both the base policy and the environmental
factor encoder. We cannot promise that both two networks are trained as expected and zt could
be really representing as extrinsic factors well, because zt hasn’t got any constraints to ensure its
representing ability. zt could be anything.

Still maintaining the teacher-student pipeline, we build some auxiliary losses for aid. As We change
the environmental factor encoder to be a pretrained dynamics model ϕ, which is trained under the
reconstruction loss, like auto-encoder, or next-step prediction loss. Here, for instance, we use the
next-step prediction loss. The pretrained dynamics model ϕ is totally frozen during training teacher
and student. To learn the transition process of dynamics, we first use a random policy to explore in
Isaacgym and collect the data D = {ot, at}. The loss is depicted as:

Lpred =MSE(f ◦ ot, ψ(ϕ(ot, at−1))) ,

where f is a [0, 1]obs vector that selects the important observations like dof position and dof velocity
as the objective to predict and ψ serves as the decoder in auto-encoder structure. This encoder at
least learns some transition features of the environment, and its representing ability can be assured
which should be better than the RMA encoder.

3.3 NETWORK STRUCTURES APPLICATION

Apart from teacher-student pipeline, another way to attain adaptivity is the application of complex
architectures which is complex enough to learn the adaptivity from history trajectories. Accounting
for the threshold of inference time and the trainability in RL, it shouldn’t be too complex. Take
Li et al. (2024)’s idea, we adopt the dual-history structure. Li et al. (2024) just assessed the CNN
network and we are going to do more, referring to 3.
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(a) Evaluation on rough, smooth, stair and discrete ter-
rains

(b) Evaluation on rough terrains only

Figure 4: Results for all the methodologies we tested on our metric for adaptivity. The linear track-
ing velocity errors (m/s) in simulation for different adaptive methods, including improvement on
architecture, history utilization, teacher-student, and auxiliary loss design. The radius is the linear
tracking velocity error we measure in sim in m/s. And each angle represents a special environment
condition or instruction. ’Cmd’ refers to given command x(or y)-axis velocity(m/s). ’Fri’ refers
to friction. ’Mas’ refers to the base mass added. The smaller in area means the policy has better
adaptivity.

As 3 describes, this training is free from teacher-student pipeline. The input contains two parts of
history, a short one (regarded as current observation) and a long one, where the complex structures
would learn the system identification from. We tried different kinds of networks: CNN, GRU,
LSTM, MLP and decision transformerChen et al. (2021)(one block and two block). Note that we
use the output of transformer (predicted action in decision transformer) directly as the latent vector.
We just regard the transformer as a complex network.

3.4 DO WE NEED SPECIAL HISTORY DESIGNS

The history could be specially designed, like you don’t have to record the whole history, from
t − 1 to t − h, it’s like that you might take some discrete pieces of history, and there lies a lot
of things to be investigated. The discretized history, for instance, to be 2-powered arrays like
ot−1, ot−2, ot−4, ot−8, ot−16, ..., might take less spaces and speed up computation simultaneously,
which is quite beneficial for real-time locomotions. But we didn’t make it to real-world deployment
for this project.

4 EXPERIMENTAL RESULTS

4.1 IN SIMULATION

Fig. 4 presents an all-rounded comparison on choosing different network structures as our long-
history model. To assess the performance of the policies throughout various environments, we rolled
out 25 metrics under different circumstances for each policy: 15 for command velocities, 5 for added
mass, and 5 for frictions. We drew radar plots to better visualize the policies’ overall ability. For
each point, the distance to the origin point represents the linear velocity tracking error, serving as our
main metric in this study. And each angle represents a specific environmental condition. Detailed
metric data refers to 4. Table 1 shows the default conditions and metric settings, and each metric
only alters what it denotes. More, for fair comparisons, all the methodologies are trained under the
same hyperparameters.
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Parameter Value
history length 66
latent dimension 12
x-axis command velocity range [-1.0,3.0] m/s
y-axis command velocity range [-1.0,1.0] m/s
friction range [0.5,1.25]
base mass range [0,2.5] kg
stiffness 28
damping 0.7
training iteration 20000

Table 1: The default settings in evaluation
Label examples Explanations
cmd-0.5 x-axis velocity command=0.5m/s
cmd-y-0.5 y-axis velocity command=0.5m/s
mas-0.5 added base mass=0.5kg
fri-0.5 friction coefficient in the environment=0.5

Table 2: The specific settings in evaluation

Network Architecture We compared the choices of the long-history network architecture. This
network analyzes systematic identification from a relatively long trajectory history, so we tried out
using convolutional models like CNN, sequential models like LSTM, GRU and transformers, and
basic models like MLP. Note that all of them takes in a fixed length of history trajectory as their
inputs. And all of the networks are trained directly by RL with the same fixed training iterations.

As in Fig. 4, the policy using a one-block transformer as a long-history encoder has a lower tracking
error than all others in almost every situation. It shows great adaptivity to high-speed and low-
speed situations, different levels of pressure, and slippy and rough terrain. Note that this one-block
transformer takes in trajectories as tokens in the format of {st−h+1, at−h, . . . , st−1, at−2, st, at−1}
where h denotes the history length, which is identical to Decision Transformer.

Note that the one-block transformer outperforms the two-block transformer. Despite of the sim-
plicity, the one-block transformer achieves competitive results as it has the least area among all the
methodologies except for the privileged teacher. So we shall compare other methodologies with the
one-block transformer later.

History Utilization We compare the one-block full-length transformer with one-block dis-
crete transformer. The discrete transformer takes several discrete history steps as input,
rather than the whole. For instance, we design the discrete history as the concatenation of
{ot−64, ot−32, ot−16, ot−8, ot−4, ot−1, ot} where ot = {st, at}.
Table 4 and 5 shows that a simplified design for history leads to a general loss in performance.
However it is still quite competitive; a reduction in history length speeds up the computation and
takes less inference time, which is critical for Sim2Real.

To validate the use of history is of necessity, we also tried without the long history, literally ”short
only” in 4 and 5. It gets truly less competitive without the input of long history.

Training Pipeline Design Do we need a special training pipeline design like teacher-student for
adaptivity? That’s been a continuous dispute. And in this section, we choose state-of-the-art RMA
teacher-student structure for comparison. Note that we use the same history length for both the
transformer-based policy and the rma-student. Table 4 and 5 show the adaptivity of our one-block
transformer policy over the RMA-student. The performance of the one-block transformer policy
does not surpass RMA-teacher, which is regarded as an upper bound of all non-privileged policies,
further validating our results.

5



Published as a conference paper at ICLR 2024

Figure 5: Dashed lines for our auxiliary prediction loss-aided teacher and Solid lines for RMA
teacher. Focus on the 0-noise condition, ours performs better than RMA Teacher. and it could be
easily effected by noises on the encoder output, therefore further validating the adaptivity it learns.

RMA student Policy Transformer Dual Policy
Mean speed error(%)↓ 26.98± 10.16 10.38± 5.637

Success Rate (%) 100 100

Table 3: Real world deployment metrics. Quadrupedal Robot Unitree A1 walks a 2m distance on
the plane with a consistent forwarding command of 0.5m/s. We measure the time consumed and
calculate the mean velocity over 3 laps, forwards and backwards.

Auxiliary Loss Design for Adaptivity As mentioned, we found that RMA-student still works
well even when its adaptation module output is replaced by random numbers. And 1 evidently sheds
light on this discovery. So the adaptation module in RMA is of no use most of the time. We observe
that RMA-teacher also suffers from this problem, indicating that this teacher-student pipeline trains
a much too robust base policy and invalid precedent encoders. The source of the issue lies in the
teacher policy training session.

So, to overcome the issue, we built some auxiliary loss designs for the environment factor encoder.
We tried applying the prediction loss, which is the error against the next step factors. The factors to
predict are the DoFs’ positions and velocities. Fig. 5 shows that they both reach better performance
than teacher-student under zero-noise conditions. And as Fig. 5 shows, it passes the adaptation
module validation test.

4.2 REAL-WORLD EXPERIMENTS FOR A1

Velocity tracking performance We have also deployed our most competitive method, which ap-
plies dual history and transformer structure, onto the Unitree A1 quadrupedal robot. Our main
concern is the velocity tracking error. We evaluated them by walking on the plane with a command
0.5m/s for a distance of 2 meters and we tested the time consumed. And the result is as 3 shows.

5 CONCLUSION

We have drawn to our conclusion that the vanilla dual history structure can attain higher adaptivity
than RMA student, and on Unitree A1 the one-block transformer works the best. More, history uti-
lization skills like discretize histories does not improve the performances, so does not using history.
And the aid of auxiliary prediction loss for the teacher encoder do prevent the teacher to learn to
be too robust in teacher-student pipeline. However the teacher-student pipeline is no longer critical
for adaptivity because it does not train a student policy that is better than the transformer-structured
policy.
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See below.

7



Published as a conference paper at ICLR 2024

Table 4: Linear Velocity Tracking Errors of Different Strategies in All Terrains. The numbers are
the average tracking errors of the trajectories. The smaller the better.

Dual-
TF

Dual-
2BTF

Dual-
MLP

Dual-
CNN

Dual-
LSTM

Dual-
GRU

RMA
Teacher
(Ex-
pert)

RMA-
Student
CNN

RMA-
Student
TF

Dual-
Discrete
TF

No
Hist

cmd
vx
-1.5 0.2162 0.1992 0.2456 0.2959 0.2633 0.3296 0.1452 0.2964 0.2948 0.2517 0.1989
-1.0 0.1352 0.1674 0.1536 0.1632 0.2051 0.2357 0.1160 0.2117 0.2276 0.1837 0.1436
-0.5 0.1324 0.1313 0.1252 0.1449 0.1854 0.1755 0.1123 0.2004 0.2079 0.1827 0.1467
0.1 0.1181 0.1713 0.1208 0.1449 0.1623 0.2332 0.1048 0.1781 0.1832 0.1779 0.1518
0.5 0.1587 0.1610 0.1607 0.1562 0.1718 0.2744 0.1138 0.2444 0.2500 0.1777 0.1960
1.0 0.1661 0.1557 0.1796 0.1818 0.1990 0.2593 0.1191 0.3568 0.3422 0.1992 0.2498
1.5 0.2102 0.2156 0.2111 0.2212 0.3107 0.3001 0.1316 0.7014 0.6546 0.2642 0.3331
2.0 0.2633 0.3002 0.2585 0.2875 0.3999 0.4045 0.1489 0.9432 0.9284 0.3834 0.4129
2.5 0.3142 0.3619 0.3393 0.3187 0.5258 0.4370 0.1745 0.8231 0.7590 0.3781 0.4250
3.0 0.3760 0.5160 0.4578 0.4466 0.5951 0.4971 0.2659 0.7448 0.7365 0.4745 0.4634
3.5 0.5192 0.5868 0.6000 0.5931 0.5880 0.6144 0.3301 0.7675 0.7736 0.5952 0.5780
4.0 0.6429 0.8947 0.7207 0.7126 0.9205 0.7273 0.4270 0.9372 0.9499 0.7481 0.7217

cmd
vy
-1.5 0.3428 0.6102 0.5400 0.4399 0.3470 0.5010 0.2146 0.5897 0.5889 0.3429 0.3657
0.0 0.1651 0.3421 0.1655 0.1741 0.2228 0.2343 0.1275 0.2692 0.2881 0.1833 0.2115
1.5 0.3047 0.5558 0.3780 0.3372 0.5022 0.3881 0.2080 0.5203 0.5366 0.3856 0.3613
friction
0.1 0.1859 0.4359 0.2122 0.2151 0.1968 0.2818 0.1367 0.3453 0.3260 0.2368 0.2548
0.5 0.1871 0.3823 0.2266 0.2304 0.2644 0.2980 0.1426 0.3695 0.3560 0.2430 0.2394
1.0 0.1773 0.3359 0.1950 0.1915 0.2140 0.2651 0.1384 0.3467 0.3402 0.2102 0.2298
2.0 0.2043 0.3333 0.2150 0.2452 0.2234 0.3178 0.1369 0.4132 0.3917 0.2519 0.2955
5.0 0.2257 0.3029 0.2408 0.2555 0.2764 0.3207 0.1550 0.4596 0.4322 0.3030 0.3106
base
mass
-2.5 0.2123 0.3049 0.1999 0.2227 0.4197 0.3087 0.1417 0.3944 0.4117 0.2371 0.2685
0.5 0.1860 0.2329 0.1910 0.1947 0.2381 0.2663 0.1341 0.3346 0.3246 0.2218 0.2429
2.5 0.1842 0.3740 0.2032 0.2323 0.2559 0.2891 0.1410 0.3678 0.3700 0.2286 0.2787
5.0 0.1901 0.3174 0.2362 0.2229 0.2968 0.2910 0.1454 0.4206 0.4089 0.2548 0.3316
10.0 0.2207 0.3604 0.3210 0.3253 0.3054 0.3286 0.1570 0.4565 0.4509 0.3017 0.3558
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Table 5: Linear velocity tracking errors of different strategies in rough terrains only. Considering
pacing upstairs and downstairs with the speed of more than 3.0m/s almost impossible, we derived
their performances on rough terrains for references.

Dual-
TF

Dual-
2BTF

Dual-
MLP

Dual-
CNN

Dual-
LSTM

Dual-
GRU

RMA
Teacher

RMA-
Student
CNN

RMA-
Student
TF

Dual-
Discrete
TF

No
Hist

cmd
vx
-1.5 0.1768 0.1438 0.1789 0.2426 0.1986 0.2102 0.1217 0.1588 0.1580 0.1545 0.1520
-1.0 0.1183 0.1117 0.1266 0.1339 0.1367 0.1524 0.1052 0.1480 0.1462 0.1253 0.1174
-0.5 0.1105 0.1077 0.1073 0.0993 0.1129 0.1320 0.1041 0.1459 0.1466 0.1232 0.1155
0.1 0.1095 0.1167 0.1157 0.1127 0.1232 0.2102 0.0950 0.1513 0.1512 0.1243 0.1287
0.5 0.1174 0.1197 0.1253 0.1206 0.1319 0.2317 0.0977 0.1508 0.1458 0.1322 0.1462
1.0 0.1195 0.1317 0.1394 0.1364 0.1335 0.2049 0.1082 0.1727 0.1714 0.1406 0.1537
1.5 0.1324 0.1334 0.1586 0.1511 0.1505 0.2003 0.1164 0.2181 0.2155 0.1535 0.1641
2.0 0.1470 0.1437 0.1771 0.1737 0.1775 0.2240 0.1362 0.2704 0.2677 0.1873 0.1867
2.5 0.1687 0.1959 0.1981 0.2120 0.2184 0.2302 0.1407 0.3275 0.3286 0.2378 0.2194
3.0 0.2678 0.3143 0.2776 0.2894 0.3128 0.3219 0.2012 0.4222 0.4213 0.3051 0.2743
3.5 0.3074 0.2797 0.4331 0.4273 0.4256 0.4089 0.2580 0.5104 0.5330 0.3825 0.3703
4.0 0.3846 0.4209 0.5569 0.5334 0.5957 0.4107 0.2816 0.6499 0.6249 0.5414 0.4445
cmd
vy
-1.5 0.2217 0.2430 0.3414 0.2651 0.2397 0.2737 0.1559 0.3504 0.3422 0.1897 0.2028
0.0 0.1300 0.1262 0.1488 0.1335 0.1505 0.1972 0.1182 0.2061 0.2096 0.1570 0.1589
1.5 0.2198 0.1793 0.2560 0.2361 0.2540 0.3033 0.1652 0.3233 0.3191 0.2097 0.2212
friction
0.1 0.1529 0.1537 0.1743 0.1824 0.1724 0.2204 0.1303 0.2392 0.2331 0.1806 0.1781
0.5 0.1540 0.1743 0.1796 0.1876 0.1709 0.2188 0.1274 0.2322 0.2313 0.1774 0.1758
1.0 0.1360 0.1717 0.1552 0.1512 0.1610 0.2055 0.1207 0.2233 0.2230 0.1632 0.1651
2.0 0.1361 0.1459 0.1542 0.1597 0.1737 0.2193 0.1231 0.2283 0.2139 0.1728 0.1751
5.0 0.1501 0.1650 0.1812 0.1886 0.2120 0.2357 0.1267 0.2134 0.2161 0.1760 0.1797
base
mass
-2.5 0.1469 0.1752 0.1627 0.1550 0.1811 0.2214 0.1216 0.2483 0.2443 0.1734 0.1579
0.5 0.1341 0.1693 0.1520 0.1627 0.1619 0.2122 0.1207 0.2265 0.2265 0.1643 0.1647
2.5 0.1375 0.1740 0.1839 0.1528 0.1676 0.2174 0.1228 0.2208 0.2196 0.1790 0.1736
5.0 0.1550 0.1707 0.1714 0.1891 0.2015 0.2165 0.1244 0.2183 0.2171 0.1841 0.1983
10.0 0.1779 0.1881 0.2340 0.2475 0.2964 0.2480 0.1538 0.2566 0.2628 0.2297 0.2445
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